- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Amir Mortazawi (1)
-
Ruiying Chai (1)
-
Ruiying Chai, Amir Mortazawi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a nonlinear capacitive WPT system that automatically compensate for the coupling variation between the transmitter and receiver in a capacitive wireless power transfer (WPT) system with no active circuitry. The system is capable of minimizing the output power variation at a fixed operating frequency of13 MHz as the coupling distance varies. A constant output power is achieved over a wide range of coupling capacitance variation in comparison to the conventional capacitive wireless power transmission circuits. Such an approach is attractive for biomedical implants employing a capacitive WPT system.more » « less
-
Ruiying Chai, Amir Mortazawi (, IEEE MTTS International Microwave Symposium digest)null (Ed.)Conventional linear resonant wireless power trnnsfer (WPT) systems suffe1· from a significant pe1•formance degrndation as the coupling factor between the translnit and receive coils varies. In this paper, the performance of a new WPT circuit that takes the advantage of nonlinear resonant circuit is investigated. It employs passive nonlinear resonators in both the trnnslnitter and receiver sides to regulate the output power without using any active or control circuitry, frequency tuning or complicated coil configurntions. A 60 W nonlinear WPT prototype circuit working at 1.5 MHz is designed, fab1icated and compared with a silnilal'ly designed linear \VPT circuit. The nonlinem· \VPT circuit is capable of maintaining almost a constant output power while the distance between the coils changes from 6 cm to 15 cm, a significant performance improvement as compared to the linear WPT circuit tested under the same conditions.more » « less
An official website of the United States government

Full Text Available